Published in

Wiley, Chemistry - A European Journal, 4(13), p. 1251-1260, 2007

DOI: 10.1002/chem.200600781

Links

Tools

Export citation

Search in Google Scholar

Structural, Solid‐State NMR and Theoretical Studies of the Inverse‐Coordination of Lithium Chloride Using Group 13 Phosphide Hosts

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The reaction of MeAlCl2 with 'PhPLi2' in THF gives [{MeAl(PPh)3Li(4).3 THF}4(mu4-Cl)]-Li+ (1). The GaIII and InIII analogues, [{MeE(PPh)3Li(4).3 THF}4(mu4-Cl)]-Li+(THF)3 (E=Ga (2), In (3)), are obtained by the in situ reactions of MeECl2 with PhPLi2 in THF. For all of the complexes, the cage anions have an unusual cubic arrangement that is similar to a zeolite, and contain large voids (ca. 17 A). The location of the Li+ counterions in 1-3 and their coordination environment appears to subtly reflect variations in packing and lattice energy. Whereas in 1 highly mobile, loosely coordinated Li+ counterions are present, 2 and 3 contain less mobile THF-solvated counterions within the cavities. X-ray crystallographic and solid-state NMR studies are reported on 1-3, together with model DFT calculations on the selectivity of halide coordination.