Published in

Taylor and Francis Group, Philosophical Magazine, 13(93), p. 1549-1562

DOI: 10.1080/14786435.2012.747010

Links

Tools

Export citation

Search in Google Scholar

In-plane structural order of domain engineered La0.7Sr0.3MnO3thin films

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present a detailed structural study of tensile-strained La0.7Sr0.3MnO3 thin films. We use the substrate miscut to control the number of rhombohedral variants in the films and study the in-plane order and structural distortions. Using high-resolution X-ray diffraction, we demonstrate that step-edge induced lattice modulations occur in 4-variant films, whereas periodic twinning is the dominant in-plane order for 2-variant films. We show that the in-plane twinning angle is almost completely relaxed. However, the relaxation of shear strain by the out-of-plane twinning angle and the monoclinic distortion is only partial. Furthermore, the film thickness dependence of the domain width reveals that domain formation is a universal mechanism for shear strain relaxation. Finally, we show that the structural response to the transition from the paramagnetic to the ferromagnetic phase of La0.7Sr0.3MnO3 at 345 K is smaller in 4-variant films compared to 2-variant films.