Published in

American Association of Immunologists, The Journal of Immunology, 4(177), p. 2441-2451, 2006

DOI: 10.4049/jimmunol.177.4.2441

Links

Tools

Export citation

Search in Google Scholar

Identification of PP1 as a Caspase-9 Regulator in IL-2 Deprivation-Induced Apoptosis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

One of the mechanisms that regulate cell death is the reversible phosphorylation of proteins. ERK/MAPK phosphorylates caspase-9 at Thr(125), and this phosphorylation is crucial for caspase-9 inhibition. Until now, the phosphatase responsible for Thr(125) dephosphorylation has not been described. Here, we demonstrate that in IL-2-proliferating cells, phosphorylated serine/threonine phosphatase type 1alpha (PP1alpha) associates with phosphorylated caspase-9. IL-2 deprivation induces PP1alpha dephosphorylation, which leads to its activation and, as a consequence, dephosphorylation and activation of caspase-9 and subsequent dissociation of both molecules. In cell-free systems supplemented with ATP caspase-9 activation is induced by addition of cytochrome c and we show that in this process PP1alpha is indispensable for triggering caspase-9 as well as caspase-3 cleavage and activation. Moreover, PP1alpha associates with caspase-9 in vitro and in vivo, suggesting that it is the phosphatase responsible for caspase-9 dephosphorylation and activation. Finally, we describe two novel phosphatase-binding sites different from the previously described PP1alpha consensus motifs, and we demonstrate that these novel sites mediate the interaction of PP1alpha with caspase-9.