Published in

Elsevier, Bioresource Technology, 2(102), p. 1174-1184

DOI: 10.1016/j.biortech.2010.09.045

Links

Tools

Export citation

Search in Google Scholar

Dynamic model-based evaluation of process configurations for integrated operation of hydrolysis and co-fermentation for bioethanol production from lignocellulose

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this study a number of different process flowsheets were generated and their feasibility evaluated using simulations of dynamic models. A dynamic modeling framework was used for the assessment of operational scenarios such as, fed-batch, continuous and continuous with recycle configurations. Each configuration was evaluated against the following benchmark criteria, yield (kg ethanol/kg dry-biomass), final product concentration and number of unit operations required in the different process configurations. The results show that simultaneous saccharification and co-fermentation (SSCF) operating in continuous mode with a recycle of the SSCF reactor effluent, results in the best productivity of bioethanol among the proposed process configurations, with a yield of 0.18 kg ethanol/kgdry-biomass.