Published in

2012 American Control Conference (ACC)

DOI: 10.1109/acc.2012.6315334

Links

Tools

Export citation

Search in Google Scholar

Constrained Control and Optimization of Tubular Solid Oxide Fuel Cells for Extending Cell Lifetime

Journal article published in 2011 by Benjamin J. Spivey, John D. Hedengren ORCID, Thomas F. Edgar
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Extending fuel cell lifetime is a necessary objective for reducing fuel cell power generation cost of electricity. Capital costs comprise the most significant fraction of the cost of electricity. Reducing the frequency of fuel cell replacement can be achieved by implementing a control strategy that prevents excursions into operating regions causing failure. In this paper we implement a constrained MIMO model predictive controller (MPC) to avoid the failure modes relevant for a high-temperature tubular solid oxide fuel cell (SOFC) system while performing load-following. The primary causes of failure are catalyst poisoning, fuel or air starvation, carbon deposition, and microcracking. Prior steady-state thermomechanical stress analysis in literature has demonstrated that the minimum cell temperature and maximum negative radial thermal gradient are primary causes of microcracking in the SOFC. State-of-the-art SOFC control literature often seeks to track a mean or outlet cell temperature. The authors have presented the first approach to control the primary two causes of thermally-driven microcracking in tubular SOFCs using constrained control. Constraints are also incorporated into a steady-state optimization to ensure a feasible optimum.