Published in

IOP Publishing, Nanotechnology, 5(21), p. 055607, 2010

DOI: 10.1088/0957-4484/21/5/055607

Links

Tools

Export citation

Search in Google Scholar

Synthesis and characterization of ultra-fine Y2O3:Eu3+nanophosphors for luminescent security ink applications

Journal article published in 2010 by Bipin Kumar Gupta, D. Haranath, Shikha Saini, V. N. Singh ORCID, V. Shanker
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report a simple method for the synthesis of ultra-fine Eu(3+)-doped yttria (Y(2)O(3)) nanophosphors with an average diameter of approximately 5 nm for development of a transparent colloid that could be used as a luminescent security ink. This has been achieved by suitably substituting Eu(3+) ions at the favorable C(2) symmetry sites of Y(3+) ions and quantum mechanically confining the growth of the nanophosphor using a novel acid-catalyzed sol-gel technique. This is one of the few reports that depict the development of a transparent aqueous-stable Y(2)O(3):Eu(3+) colloidal solution for strategic applications related to security codes. High resolution transmission electron microscopy images showed excellent lattice fringes that in turn support the presence of better crystal quality and enhanced photoluminescence (PL) emission from the Y(1.9)O(3)Eu(0.1)(3+) nanophosphor system. Time resolved emission spectroscopy measurement indicated a PL decay time in the range of a few milliseconds, suitable for making luminescent security ink and other advanced applications in optoelectronic devices and bio-labeling.