Published in

American Physiological Society, American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 4(290), p. R1087-R1093, 2006

DOI: 10.1152/ajpregu.00446.2005

Links

Tools

Export citation

Search in Google Scholar

Cerebral blood flow during orthostasis: Role of arterial CO2

Journal article published in 2006 by J. M. Serrador, R. L. Hughson ORCID, J. M. Kowalchuk, R. L. Bondar, Gelb Aw, A. W. Gelb
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Reductions in end-tidal Pco2 (PetCO2) during upright posture have been suggested to be the result of hyperventilation and the cause of decreases in cerebral blood flow (CBF). The goal of this study was to determine whether decreases in PetCO2 reflected decreases in arterial Pco2 (PaCO2) and their relation to increases in alveolar ventilation (V̇a) and decreases in CBF. Fifteen healthy subjects (10 women and 5 men) were subjected to a 10-min head-up tilt (HUT) protocol. PaCO2, V̇a, and cerebral flow velocity (CFV) in the middle and anterior cerebral arteries were examined. In 12 subjects who completed the protocol, reductions in PetCO2 and PaCO2 (−1.7 ± 0.5 and −1.1 ± 0.4 mmHg, P < 0.05) during minute 1 of HUT were associated with a significant increase in V̇a (+0.7 ± 0.3 l/min, P < 0.05). However, further decreases in PaCO2 (−0.5 ± 0.5 mmHg, P < 0.05), from minute 1 to the last minute of HUT, occurred even though V̇a did not change significantly (−0.2 ± 0.3 l/min, P = not significant). Similarly, CFV in the middle and anterior cerebral arteries decreased (−7 ± 2 and −8 ± 2%, P < 0.05) from minute 1 to the last minute of HUT, despite minimal changes in PaCO2. These data suggest that decreases in PetCO2 and PaCO2 during upright posture are not solely due to increased V̇a but could be due to ventilation-perfusion mismatch or a redistribution of CO2 stores. Furthermore, the reduction in PaCO2 did not fully explain the decrease in CFV throughout HUT. These data suggest that factors in addition to a reduction in PaCO2 play a role in the CBF response to orthostatic stress.