Published in

Future Medicine, Nanomedicine, 17(10), p. 2643-2657, 2015

DOI: 10.2217/nnm.15.103

Links

Tools

Export citation

Search in Google Scholar

Investigating the role of shape on the biological impact of gold nanoparticles in vitro

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Aim: To investigate the influence of gold nanoparticle geometry on the biochemical response of Calu-3 epithelial cells. Materials & methods: Spherical, triangular and hexagonal gold nanoparticles (GNPs) were used. The GNP-cell interaction was assessed via atomic absorption spectroscopy (AAS) and transmission electron microscopy (TEM). The biochemical impact of GNPs was determined over 72 h at (0.0001–1 mg/ml). Results: At 1 mg/ml, hexagonal GNPs reduced Calu-3 viability below 60%, showed increased reactive oxygen species production and higher expression of proapoptotic markers. A cell mass burden of 1:2:12 as well as number of GNPs per cell (2:1:3) was observed for spherical:triangular:hexagonal GNPs. Conclusion: These findings do not suggest a direct shape-toxicity effect. However, do highlight the contribution of shape towards the GNP-cell interaction which impacts upon their intracellular number, mass and volume dose.