Published in

Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VI

DOI: 10.1117/12.868517

Links

Tools

Export citation

Search in Google Scholar

Eyjafjallajökull volcano ash plume detection in the frame of the new constituting lidar network Leonet

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Eyjafjallajökull volcano eruptions of ash plumes starting on April 2010 paralyzed completely air traffic in Europe for several days. During the crisis, Leosphere collected 24/7 real time measurements of the backscatter profiles, taken by ALS polarizations lidars spread from Denmark to South of France in order to provide quick looks of the sky at regular intervals for different met agencies and for the Volcanic Ash Advisory Centres (VAAC) coordinated by UK MetOffice. Moreover, Meteo France supported by other institutions such as CNRS (Centre National de la Recherche Scientifique), CEA (Commissariat à l'Energie Atomique), CNES (Centre National d'Études Spatiales) and Leosphere performed several test flights over France and North Atlantic with an airborne Lidar. These unique data allowed detection and identification of ash plume and provided a guidance regarding the decision-making chain. The ash mass concentration and its calculation were also discussed.