Published in

Wiley, Advanced Functional Materials, 20(21), p. 3982-3989, 2011

DOI: 10.1002/adfm.201101224

Links

Tools

Export citation

Search in Google Scholar

Fracture of Sub‐20nm Ultrathin Gold Nanowires

Journal article published in 2011 by Yang Lu ORCID, Jun Song, Jian Yu Huang, Jun Lou
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Fracture of metals at the nanoscale and corresponding failure mechanisms have recently attracted considerable interest. However, quantitative in situ fracture experiments of nanoscale metals are rarely reported. Here it is shown that, under uni-axial tensile loading, single crystalline ultrathin gold nanowires may fracture in two modes, displaying distinctively different fracture morphologies and ductility. In situ high resolution transmission electron microscopy (HRTEM) studies suggest that the unexpected brittle-like fracture was closely related to the observed twin structures, which is very different from surface dislocation nucleation/propagation mediated mechanism in ductile fracture mode. Molecular dynamics (MD) simulations further reveal the processes of shear-induced twin formation and damage initiation at the twin structure/free surface interface, confirming the experimentally observed differences in fracture morphology and ductility. Finally, a fracture criterion based on competition between twin formation and surface dislocation nucleation/propagation as a function of misalignment angle is discussed.