Published in

Cell Press, Molecular Cell, 2(48), p. 277-287, 2012

DOI: 10.1016/j.molcel.2012.08.012

Links

Tools

Export citation

Search in Google Scholar

Circadian Dbp Transcription Relies on Highly Dynamic BMAL1-CLOCK Interaction with E Boxes and Requires the Proteasome

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The transcription factors BMAL1 and CLOCK drive the circadian transcription of clock and clock-controlled genes, such as Dbp. To investigate the kinetics of BMAL1 binding to target genes in real time, we generated a cell line harboring tandem arrays of Dbp repeats and monitored the binding of a fluorescent BMAL1 fusion protein to these arrays by time-lapse microscopy. BMAL1 occupancy at the Dbp locus was highly circadian and strictly dependent on CLOCK. Moreover, BMAL1-CLOCK associations with Dbp were extremely unstable and displayed stochastic, proteasome-dependent fluctuations. Proteasome inhibition prolonged the residence time of BMAL1-CLOCK but resulted in an immediate attenuation of Dbp transcription. In cells harboring a single Dbp-luciferase reporter gene copy, this silencing was shown to be caused by a decrease in both the frequencies and sizes of transcriptional bursts. Thus, BMAL1 and CLOCK may act as Kamikaze activators, in that they are rapidly degraded once bound to Dbp chromatin.