Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 37(16), p. 19941-19951

DOI: 10.1039/c4cp02719a

Links

Tools

Export citation

Search in Google Scholar

Direct observation of OH formation from stabilised Criegee intermediates

Journal article published in 2014 by A. Novelli, L. Vereecken ORCID, J. Lelieveld, H. Harder ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The syn-CH3CHOO Criegee intermediate formed from the ozonolysis of propene and (E)-2-butene was detected via unimolecular decomposition and subsequent detection of OH radicals by a LIF-FAGE instrument. An observed time dependent OH concentration profile was analysed using a detailed model focusing on the speciated chemistry of Criegee intermediates based on the recent literature. The absolute OH concentration was found to depend on the steady state concentration of syn-CH3CHOO at the injection point while the time dependence of the OH concentration profile was influenced by the sum of the rates of unimolecular decomposition of syn-CH3CHOO and wall loss. By varying the most relevant parameters influencing the SCI chemistry in the model and based on the temporal OH concentration profile, the unimolecular decomposition rate k (293 K) of syn-CH3CHOO was shown to lie within the range 3-30 s(-1), where a value of 20 ± 10 s(-1) yields the best agreement with the CI chemistry literature.