Published in

American Chemical Society, Analytical Chemistry, 23(83), p. 8968-8974, 2011

DOI: 10.1021/ac201765a

Links

Tools

Export citation

Search in Google Scholar

Inorganics in Organics: Quantification of Organic Phosphorus and Sulfur and Trace Element Speciation in Natural Organic Matter Using HPLC-ICPMS

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A method is presented for the chemical characterization of natural organic matter (NOM). We combined reversed-phase chromatographic separation of NOM with high resolution inductively coupled plasma mass spectrometry. A desolvation technique was used to remove organic solvent derived from the preceding chromatographic separation. We applied our method to solid-phase extracted marine dissolved organic matter samples from South Atlantic and Antarctic surface waters. The method provided a direct and quantitative determination of dissolved organic phosphorus and sulfur in fractions of differing polarity and also allowed simultaneous speciation studies of trace elements. Dissolved organic carbon/phosphorus and carbon/sulfur ratios for the different chromatographic fractions of our two samples ranged between 341-3025 for C/P and 11-1225 for C/S. Differences in elemental distribution between the fractions were attributed to different biochemical environments of the samples. Sulfur was exclusively found in one hydrophilic fraction, while uranium showed a strong affinity to the hydrophobic fractions. Our method was designed to be easily adapted to other separation techniques. The elemental information will deliver valuable information for ultrahigh resolution molecular analyses.