Published in

American Society for Microbiology, Journal of Bacteriology, 20(191), p. 6457-6464, 2009

DOI: 10.1128/jb.00497-09

Links

Tools

Export citation

Search in Google Scholar

Identification of the [FeFe]-Hydrogenase Responsible for Hydrogen Generation in Thermoanaerobacterium saccharolyticum and Demonstration of Increased Ethanol Yield via Hydrogenase Knockout

Journal article published in 2009 by A. Joe Shaw, David A. Hogsett, Lee R. Lynd ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Three putative hydrogenase enzyme systems in Thermoanaerobacterium saccharolyticum were investigated at the genetic, mRNA, enzymatic, and phenotypic levels. A four-gene operon containing two [FeFe]-hydrogenase genes, provisionally termed hfs ( h ydrogenase- F e- S ), was found to be the main enzymatic catalyst of hydrogen production. hfsB , perhaps the most interesting gene of the operon, contains an [FeFe]-hydrogenase and a PAS sensory domain and has several conserved homologues among clostridial saccharolytic, cellulolytic, and pathogenic bacteria. A second hydrogenase gene cluster, hyd , exhibited methyl viologen-linked hydrogenase enzymatic activity, but hyd gene knockouts did not influence the hydrogen yield of cultures grown in closed-system batch fermentations. This result, combined with the observation that hydB contains NAD(P)+ and FMN binding sites, suggests that the hyd genes are specific to the transfer of electrons from NAD(P)H to hydrogen ions. A third gene cluster, a putative [NiFe]-hydrogenase with homology to the ech genes, did not exhibit hydrogenase activity under any of the conditions tested. Deletion of the hfs and hydA genes resulted in a loss of detectable methyl viologen-linked hydrogenase activity. Strains with a deletion of the hfs genes exhibited a 95% reduction in hydrogen and acetic acid production. A strain with hfs and ldh deletions exhibited an increased ethanol yield from consumed carbohydrates and represents a new strategy for engineering increased ethanol yields in T. saccharolyticum .