Published in

Royal Society of Chemistry, Nanoscale, 8(7), p. 3581-3587

DOI: 10.1039/c4nr06559j

Links

Tools

Export citation

Search in Google Scholar

Controlled partial-exfoliation of graphite foil and integration with MnO2nanosheets for electrochemical capacitors

Journal article published in 2015 by Yu Song ORCID, Dong-Yang Feng, Tian-Yu Liu, Yat Li ORCID, Xiao-Xia Liu
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Here we demonstrate a controlled two-step partial exfoliation method to synthesize functionalized exfoliated graphite substrates. Ultrathin and functionalized graphene sheets anchoring on the graphite provide a large conductive surface area for loading pseudo-capacitive MnO2 nanosheets. The functionalized exfoliated graphite/MnO2 electrode achieved an excellent areal capacitance of 244 mF cm(-2), corresponding to an estimated MnO2 based gravimetric capacitance of 1061 F g(-1), which is just slightly lower than its theoretical value of 1110 F g(-1). More importantly, the seamless integration of graphene sheets and the graphite substrate minimizes the contact resistance, and substantially improves the rate capability of pseudo-capacitive materials. The electrode retained 44.8% of its capacitance when the charging current density increased 50 times from 0.23 to 11.5 mA cm(-2). This novel functionalized exfoliated graphite substrate serves as a promising supporting material that could address the relatively low electrical conductivity of various pseudo-capacitive materials, and increase the mass loading and rate capability of pseudo-capacitors.