Published in

Annual Reviews, Annual Review of Genetics, 1(38), p. 87-117, 2004

DOI: 10.1146/annurev.genet.38.072902.092259

Links

Tools

Export citation

Search in Google Scholar

Light Signal Transduction in Higher Plants

Journal article published in 2004 by Meng Chen, Joanne Chory, Christian Fankhauser ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

▪ Abstract Plants utilize several families of photoreceptors to fine-tune growth and development over a large range of environmental conditions. The UV-A/blue light sensing phototropins mediate several light responses enabling optimization of photosynthetic yields. The initial event occurring upon photon capture is a conformational change of the photoreceptor that activates its protein kinase activity. The UV-A/blue light sensing cryptochromes and the red/far-red sensing phytochromes coordinately control seedling establishment, entrainment of the circadian clock, and the transition from vegetative to reproductive growth. In addition, the phytochromes control seed germination and shade-avoidance responses. The molecular mechanisms involved include light-regulated subcellular localization of the photoreceptors, a large reorganization of the transcriptional program, and light-regulated proteolytic degradation of several photoreceptors and signaling components.