Published in

American Chemical Society, Langmuir, 24(23), p. 11991-11995, 2007

DOI: 10.1021/la7018742

Links

Tools

Export citation

Search in Google Scholar

Facile Functionalization of Gold Nanoparticles via Microwave-Assisted 1,3 Dipolar Cycloaddition

Journal article published in 2007 by William J. Sommer, Marcus Weck ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This contribution describes a simple and facile method for the functionalization of thiol-coated gold nanoparticles using microwave-assisted 1,3 dipolar cycloadditions. The developed procedure allows for the attachment of terminal alkynes onto azide-containing gold nanoparticles in nearly quantitative conversions within minutes. The utility of the method has been demonstrated by attaching a library of substituted alkynes onto gold nanoparticles in nearly quantitative yields. In a proof of principle study, we demonstrate the potential use of this methodology in catalysis by attaching palladium catalysts to the azide-containing gold nanoparticles and investigate the resulting materials as supported catalysts in Suzuki couplings. Activities that rival the nonsupported analogues were observed, demonstrating that the nanoparticle support does not interfere with the catalytic activity.