Published in

Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology

DOI: 10.1115/omae2016-54649

Links

Tools

Export citation

Search in Google Scholar

A FEM Based Potential Theory Approach for Optimal Ice Routing

Proceedings article published in 2016 by Henry Piehl, Aleksandar-Saša Milaković, Sören Ehlers
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Shipping in ice covered regions has gained high attention within recent years. Analogous to weather routing, the occurrence of ice in a seaway affects the selection of the optimal route with respect to the travel time or fuel consumption. The shorter, direct path between two points — which may lead through an ice covered area — may require a reduction of speed and an increase in fuel consumption. A longer, indirect route, could be more efficient by avoiding the ice covered region. Certain regions may have to be avoided completely, if the ice thickness exceeds the ice-capability of the ship. The objective of this study is to develop a computational method that combines coastline maps, route cost information (e.g. ice thickness), transport task and ship properties to find the optimal route between port of departure A and port of destination B. The development approach for this tool is to formulate the transport task in form of a potential problem, solve this equation with a finite element method and apply edge detection methods and line integration to determine the optimal route. The functionality of the method is first evaluated with simple test problems and then applied to realistic transport scenarios.