Published in

Wiley, International Journal of Cancer, 1(134), p. 244-248, 2013

DOI: 10.1002/ijc.28339

Links

Tools

Export citation

Search in Google Scholar

Allele-specific imbalance mapping identifies HDAC9 as a candidate gene for cutaneous squamous cell carcinoma : HDAC9 as a Candidate Gene for cSCC

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

More than 3.5 million non-melanoma skin cancers were treated in 2006; of these 700,000 were cutaneous squamous cell carcinomas (cSCC). Despite clear environmental causes for cSCC, studies also suggest genetic risk factors. A cSCC susceptibility locus, Skts5, was identified on mouse chromosome 12 by linkage analysis. The orthologous locus to Skts5 in humans maps to 7p21 and 7q31. These loci show copy number increases in approximately 10% of cSCC tumors. Here we show that an additional 15-22% of tumors exhibit copy-neutral loss of heterozygosity. Furthermore, our previous data identified microsatellite markers on 7p21 and 7q31 that demonstrate preferential allelic imbalance (PAI) in cSCC tumors. Based on these results, we hypothesized that the human orthologous locus to Skts5 would house a gene important in human cSCC development and that tumors would demonstrate allele-specific somatic alterations. To test this hypothesis, we performed quantitative genotyping of 108 single nucleotide polymorphisms (SNPs) mapping to candidate genes at human SKTS5 in paired normal and tumor DNAs. Nine SNPs in HDAC9 (rs801540, rs1178108, rs1178112, rs1726610, rs10243618, rs11764116, rs1178355, rs10269422, and rs12540872) showed PAI in tumors. These data suggest that HDAC9 variants may be selected for during cSCC tumorigenesis. © 2013 Wiley Periodicals, Inc.