Published in

Proceedings of the 15th ACM Mardi Gras conference on From lightweight mash-ups to lambda grids: Understanding the spectrum of distributed computing requirements, applications, tools, infrastructures, interoperability, and the incremental adoption of key capabilities - MG '08

DOI: 10.1145/1341811.1341822

Links

Tools

Export citation

Search in Google Scholar

Workflow Task Clustering for Best Effort Systems with Pegasus

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Many scientific workflows are composed of fine computational granularity tasks, yet they are composed of thousands of them and are data intensive in nature, thus requiring resources such as the TeraGrid to execute efficiently. In order to improve the performance of such applications, we often employ task clustering techniques to increase the computational granularity of workflow tasks. The goal is to minimize the completion time of the workflow by reducing the impact of queue wait times. In this paper, we examine the performance impact of the clustering techniques using the Pegasus workflow management system. Experiments performed using an astronomy workflow on the NCSA TeraGrid cluster show that clustering can achieve a significant reduction in the workflow completion time (up to 97%).