Published in

Elsevier, Journal of Hydrology, 1-4(287), p. 214-236

DOI: 10.1016/j.jhydrol.2003.10.003

Links

Tools

Export citation

Search in Google Scholar

Using a multiobjective approach to retrieve information on surface properties used in a SVAT model

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The reliability of model predictions used in meteorology, agronomy or hydrology is partly linked to an adequate representation of the water and energy balances which are described in so-called SVAT (Soil Vegetation Atmosphere Transfer) models. These models require the specification of many surface properties which can generally be obtained from laboratory or field experiments, using time consuming techniques, or can be derived from textural information. The required accuracy of the surface properties depends on the model complexity and their misspecification can affect model performance. At various time and spatial resolutions, remote sensing provides information related to surface parameters in SVAT models or state variables simulated by SVAT models. In this context, the Simple Soil-Plant-Atmosphere Transfer-Remote Sensing (SiSPAT-RS) model was developed for remote sensing data assimilation objectives. This new version of the physically based SiSPAT model simulates the main surface processes (energy fluxes, soil water content profiles, temperatures) and remote sensing data in the visible, infrared and thermal infrared spectral domains. As a preliminary step before data assimilation in the model, the objectives of this study were (1) to apply a multiobjective approach for retrieving quantitative information about the surface properties from different surface measurements and (2) to determine the potential of the SiSPAT-RS model to be applied with ‘little’ a priori information about input parameters. To reach these goals, the ability of the Multiobjective Generalized Sensitivity Analysis (MOGSA) algorithm to determine and quantify the most influential input parameters of the SiSPAT-RS model on several simulated output variables, was investigated. The results revealed the main influential input parameters according to different contrasted environmental conditions, and contributed to the reduction of their a priori uncertainty range. A procedure for specifying surface properties from MOGSA results was tested on the thermal and hydraulic soil parameters, and evaluated through the SiSPAT-RS model performance. Although slightly lower than a reference simulation, the performance were satisfactory and suggested that complex SVAT models can be driven with little a priori information on soil properties, as in a future context of remote sensing data assimilation. Measurement acquired on a winter wheat field of the ReSeDA (Remote Sensing Data Assimilation) experiment were used in this study.