Published in

Canadian Science Publishing, Canadian Journal of Zoology, 8(88), p. 753-763, 2010

DOI: 10.1139/z10-039

Links

Tools

Export citation

Search in Google Scholar

Metabolic power budgeting and adaptive strategies in zoology: examples from scallops and fishThe present review is one of a series of occasional review articles that have been invited by the Editors and will feature the broad range of disciplines and expertise represented in our Editorial Advisory Board.

Journal article published in 2010 by Helga Guderley, Hans Otto Pörtner ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Evolutionary explanations of the adaptive value of animal characteristics are often expressed in energetic terms, but unless they are accompanied by demonstrations of limited energy availability, they remain speculative. In this review, we argue that metabolic power budgeting provides easily testable mechanisms through which energetically efficient attributes could become adaptive. Given each organism’s maximal aerobic (and metabolic) capacity, available metabolic power (energy use per unit time) is limited and must be partitioned between different processes. This leads to compromises among the major fitness functions of growth, locomotor activity, and reproductive investment. As examples of such conflicts, we examine the compromise among growth, reproduction, and predator avoidance in scallops, as well as the means whereby thermal limitations on oxygen uptake reflect the geographical distribution limits and associated energetic trade-offs of temperate zone and polar fishes. These examples show several means whereby the budgeting of aerobic power is implicated in the major fitness trade-offs faced by animals.