Published in

European Geosciences Union, Climate of the Past, 6(9), p. 2789-2807, 2013

DOI: 10.5194/cp-9-2789-2013

Links

Tools

Export citation

Search in Google Scholar

High-resolution mineral dust and sea ice proxy records from the Talos Dome ice core

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this study we report on new non-sea salt calcium (nssCa 2+ , mineral dust proxy) and sea salt sodium (ssNa + , sea ice proxy) records along the East Antarctic Talos Dome deep ice core in centennial resolution reaching back 150 thousand years (ka) before present. During glacial conditions nssCa 2+ fluxes in Talos Dome are strongly related to tem-perature as has been observed before in other deep Antarctic ice core records, and has been associated with synchronous changes in the main source region (southern South America) during climate variations in the last glacial. However, during warmer climate conditions Talos Dome mineral dust input is clearly elevated compared to other records mainly due to the contribution of additional local dust sources in the Ross Sea area. Based on a simple transport model, we compare nssCa 2+ fluxes of different East Antarctic ice cores. From this multi-site comparison we conclude that changes in trans-port efficiency or atmospheric lifetime of dust particles do have a minor effect compared to source strength changes on the large-scale concentration changes observed in Antarctic ice cores during climate variations of the past 150 ka. Our transport model applied on ice core data is further validated by climate model data. The availability of multiple East Antarctic nssCa 2+ records also allows for a revision of a former estimate on the atmospheric CO 2 sensitivity to reduced dust induced iron fer-tilisation in the Southern Ocean during the transition from the Last Glacial Maximum to the Holocene (T1). While a former estimate based on the EPICA Dome C (EDC) record only suggested 20 ppm, we find that reduced dust induced iron fer-tilisation in the Southern Ocean may be responsible for up to 40 ppm of the total atmospheric CO 2 increase during T1. During the last interglacial, ssNa + levels of EDC and EPICA Dronning Maud Land (EDML) are only half of the Holocene levels, in line with higher temperatures during that period, indicating much reduced sea ice extent in the Atlantic as well as the Indian Ocean sector of the Southern Ocean. In contrast, Holocene ssNa + flux in Talos Dome is about the same as during the last interglacial, indicating that there was similar ice cover present in the Ross Sea area during MIS 5.5 as during the Holocene.