Published in

European Geosciences Union, Biogeosciences, 15(11), p. 4271-4288, 2014

DOI: 10.5194/bg-11-4271-2014

European Geosciences Union, Biogeosciences Discussions, 2(11), p. 2887-2932

DOI: 10.5194/bgd-11-2887-2014

Links

Tools

Export citation

Search in Google Scholar

Carbon cycle uncertainty in the Alaskan Arctic

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Climate change is leading to a disproportionately large warming in the high northern latitudes, but the magni-tude and sign of the future carbon balance of the Arctic are highly uncertain. Using 40 terrestrial biosphere models for the Alaskan Arctic from four recent model intercomparison projects – NACP (North American Carbon Program) site and regional syntheses, TRENDY (Trends in net land atmosphere carbon exchanges), and WETCHIMP (Wetland and Wetland CH 4 Inter-comparison of Models Project) – we provide a baseline of terrestrial carbon cycle uncertainty, defined as the multi-model standard deviation (σ) for each quantity that follows. Mean annual absolute uncertainty was largest for soil carbon (14.0 ± 9.2 kg C m −2), then gross primary pro-duction (GPP) (0.22 ± 0.50 kg C m −2 yr −1), ecosystem res-piration (Re) (0.23 ± 0.38 kg C m −2 yr −1), net primary pro-duction (NPP) (0.14 ± 0.33 kg C m −2 yr −1), autotrophic res-piration (Ra) (0.09 ± 0.20 kg C m −2 yr −1), heterotrophic res-piration (Rh) (0.14 ± 0.20 kg C m −2 yr −1), net ecosystem ex-change (NEE) (−0.01 ± 0.19 kg C m −2 yr −1), and CH 4 flux (2.52 ± 4.02 g CH 4 m −2 yr −1). There were no consistent spa-tial patterns in the larger Alaskan Arctic and boreal regional carbon stocks and fluxes, with some models showing NEE for Alaska as a strong carbon sink, others as a strong car-bon source, while still others as carbon neutral. Finally, AmeriFlux data are used at two sites in the Alaskan Arc-tic to evaluate the regional patterns; observed seasonal NEE was captured within multi-model uncertainty. This assess-ment of carbon cycle uncertainties may be used as a base-line for the improvement of experimental and modeling ac-tivities, as well as a reference for future trajectories in car-bon cycling with climate change in the Alaskan Arctic and larger boreal region.