Published in

IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium

DOI: 10.1109/igarss.2008.4779320

Links

Tools

Export citation

Search in Google Scholar

A Real-Aperture Radar for Ground-Based Differential Interferometry

Proceedings article published in 2008 by Charles Werner, Tazio Strozzi, Andreas Wiesmann, Urs Wegmuller
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Satellite interferometry has been used extensively for ground-motion monitoring with good success. In the case of landslides, for example, space-borne SAR interferometry has a good potential to get an overview on the slope stability. The role of a space-borne INSAR as an element in a landslide or rock fall warning system is constrained by the specific space-borne SAR imaging geometry, the typical multiple-week repeat-interval, and uncertainties in the data availability. Most of these limitations can be overcome with an in-situ radar imaging system. GAMMA has developed a portable radar interferometer that utilizes real-aperture antennas to obtain high azimuth resolution. Images are acquired line by line while rotating the transmitting and receiving antennas about a vertical axis. Phase differences between successive images acquired from the same location are used to determine line-of-sight displacements. The instrument operates at 17.2 GHz and has measurement sensitivity better than 1 mm. The instrument uses two receiving antennas with a short baseline to form an interferometer. Phase differences between simultaneous acquisitions by these antennas are used to calculate the precise look angle relative to the baseline, permitting derivation of the surface topography. Expected statistical noise in the height measurements is on the order of 1 meter. In this contribution the design, measurement principles and characteristics of GAMMA's Portable Radar Interferometer (GPRI) are presented.