Published in

American Institute of Physics, The Journal of Chemical Physics, 6(125), p. 064504

DOI: 10.1063/1.2218333

Links

Tools

Export citation

Search in Google Scholar

Parity nonconservation contribution to the nuclear magnetic resonance shielding constants of chiral molecules: A four-component relativistic study

Journal article published in 2006 by Radovan Bast, Peter Schwerdtfeger, Trond Saue ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

A systematic four-component relativistic study of the parity nonconservation (PNC) contribution to the (isotropic) NMR shielding constants of chiral molecules is presented for the P enantiomers of the series H(2)X(2) (X=(17)O,(33)S,(77)Se,(125)Te,(209)Po). The PNC contributions are obtained within a linear response approach at the Hartree-Fock level. A careful design of the basis sets is necessary. The four-component relativistic results based on the Dirac-Coulomb Hamiltonian are compared with the nonrelativistic Levy-Leblond results and those obtained by the spin-free modified Dirac Hamiltonian. The calculations confirm the nonrelativistic scaling law Z(2.4) of the PNC contribution with respect to nuclear charge Z. However, the calculations also show that the overall scaling is significantly modified by relativistic effects. The scalar relativistic effect scales as Z(4.7) for the selected set of molecules, whereas the spin-orbit effect, of opposite sign, scales better than Z(6) and completely dominates the PNC contribution for the heaviest elements. This opens up the intriguing possibility of the experimental observation of PNC effects on NMR parameters of molecules containing heavy atoms. The presented formalism is expected to be valuable in assisting the search for suitable candidate molecules.