Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society: Letters, 1(451), p. L70-L74, 2015

DOI: 10.1093/mnrasl/slv070

Links

Tools

Export citation

Search in Google Scholar

The dust mass in z > 6 normal star forming galaxies

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We interpret recent ALMA observations of z > 6 normal star forming galaxies by means of a semi-numerical method, which couples the output of a cosmological hydro-dynamical simulation with a chemical evolution model which accounts for the contribution to dust enrichment from supernovae, asymptotic giant branch stars and grain growth in the interstellar medium. We find that while stellar sources dominate the dust mass of small galaxies, the higher level of metal enrichment experienced by galaxies with M star > 10 9 M ⊙ allows efficient grain growth, which provides the dominant contribution to the dust mass. Even assuming maximally efficient supernova dust production, the observed dust mass of the z = 7.5 galaxy A1689-zD1 requires very efficient grain growth. This, in turn, implies that in this galaxy the average density of the cold and dense gas, where grain growth occurs, is comparable to that inferred from observations of QSO host galaxies at similar redshifts. Although plausible, the upper limits on the dust continuum emission of galaxies at 6.5 < z < 7.5 show that these conditions must not apply to the bulk of the high redshift galaxy population.