Published in

Wiley, Journal of the American Ceramic Society, 7(98), p. 2177-2182, 2015

DOI: 10.1111/jace.13604

Links

Tools

Export citation

Search in Google Scholar

Temperature Stability of Lead-Free Niobate Piezoceramics with Engineered Morphotropic Phase Boundary

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The temperature dependence of piezoelectric properties (direct piezoelectric coefficient d33, converse piezoelectric coefficient d33(E = 0), strain S and electromechanical coupling coefficient kp) for two niobate-based lead-free piezoceramics have been contrasted. 0.92(Na0.5K0.5)NbO3–0.02(Bi1/2Li1/2)TiO3–0.06BaZrO3 (6BZ/2BLT/92NKN) has a morphotropic phase boundary (MPB) between rhombohedral and tetragonal at room temperature and 0.92(Na0.5K0.5)NbO3–0.03(Bi1/2Li1/2)TiO3–0.05BaZrO3 (5BZ/3BLT/92NKN) features an MPB engineered to be located below room temperature. At 30°C, d33, d33(E = 0), S (at 2 kV/mm), and kp are 252 pC/N, 230 pm/V, 0.069%, 0.51 for 5BZ/3BLT/92NKN; and 348 pC/N, 380 pm/V, 0.106%, 0.57 for 6BZ/2BLT/92NKN, respectively. With increasing temperature, the piezoelectric properties decrease. At 200°C, d33, d33(E = 0), S (at 2 kV/mm), and kp are 170 pC/N, 160 pm/V, 0.059%, 0.36 for 5BZ/3BLT/92NKN; and 181 pC/N, 190 pm/V, 0.061%, 0.39 for 6BZ/2BLT/92NKN. It is found that the electromechanical coupling coefficient has a better temperature stability than the piezoelectric coefficient in the studied system due to a large temperature-dependent compliance change. The results demonstrate that engineering an MPB is highly effective in tailoring temperature stability of piezoceramics.