Published in

American Geophysical Union, Journal of Geophysical Research, B7(115), 2010

DOI: 10.1029/2008jb006079

Links

Tools

Export citation

Search in Google Scholar

Mantle Structure Beneath the Western US and its Implications for convection Processes

Journal article published in 2010 by Mei Xue, Richard M. Allen
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We present tomographic images of the mantle structure beneath the western United States. Our Dynamic North America Models of P and S velocity structure (DNA07-P and DNA07-S) use teleseismic body waves recorded at ˜600 seismic stations provided by the Earthscope Transportable Array and regional networks. DNA07-P and -S benefit from the unprecedented aperture of the network while maintaining a dense station distribution providing high-resolution body wave imaging of features through the transition zone and into the lower mantle. The main features imaged include (1) the Juan de Fuca subduction system that bottoms at ˜400 km beneath Oregon, implying interaction with the Yellowstone anomaly; (2) a low-velocity conduit beneath Yellowstone National Park that bottoms at 500 km and dips toward the northwest; (3) shallow low-velocity anomalies (upper 200 km) beneath the eastern Snake River Plain (ESRP) and the High Lava Plains, and a deep low-velocity anomaly (>600 km) beneath the ESRP but not Newberry; (4) a low-velocity ``slab gap'' to ˜400 km depth immediately south of the Mendocino Triple Junction and south of the Gorda slab; and (5) high-velocity ``drips'' beneath the Transverse Ranges, the southern Central Valley/Sierra Nevada, and central Nevada. These observations reveal extremely heterogeneous mantle structure for the western United States and suggest that we are only just beginning to image the complex interactions between geologic objects. The transportable array allows for analysis of the relationships between these anomalies in an internally consistent single tomographic model. The DNA velocity models are available for download and slicing at http://dna.berkeley.edu.