Published in

American Association for the Advancement of Science, Science, 6264(350), p. 1092-1096, 2015

DOI: 10.1126/science.aac7557

Links

Tools

Export citation

Search in Google Scholar

Gene essentiality and synthetic lethality in haploid human cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Although the genes essential for life have been identified in less complex model organisms, their elucidation in human cells has been hindered by technical barriers. We use extensive mutagenesis in haploid human cells to identify approximately 2,000 genes required for optimal fitness under culture conditions. To study the principles of genetic interactions in human cells we created a synthetic lethality network focused on the secretory pathway based exclusively on mutations. This revealed a genetic crosstalk governing Golgi homeostasis, an additional subunit of the human oligosaccharyltransferase complex, and a Phosphatidylinositol 4-Kinase Beta adaptor hijacked by viruses. The synthetic lethality map parallels observations made in yeast and projects a route forward to reveal genetic networks in diverse aspects of human cell biology.