Published in

Royal Society of Chemistry, Chemical Science, 2(4), p. 677-684, 2013

DOI: 10.1039/c2sc21555a

Links

Tools

Export citation

Search in Google Scholar

Tunneling control of chemical reactions: C–H insertion versus H-tunneling in tert-butylhydroxycarbene

Journal article published in 2013 by David Ley, Dennis Gerbig, Peter R. Schreiner ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Elusive tert-butylhydroxycarbene was generated in the gas phase via high-vacuum flash pyrolysis of tert-butylglyoxylic acid at 960 °C. The pyrolysis products were subsequently matrix isolated in solid Ar at 11 K and characterized by means of IR spectroscopy. While still being exposed to the harsh pyrolysis conditions, the hydroxycarbene undergoes CH-insertion to dimethylcyclopropanol, as well as a CC-insertion to novel methylbutenol, with activation barriers of 23.8 and 31.0 kcal mol−1, respectively. Once embedded in the cold Ar matrix, the carbene transforms to its isomer pivaldehyde not only by photolysis, but it also cuts through the barrier of 27.3 kcal mol−1 by quantum mechanical tunneling. The temperature independent half-life is measured as 1.7 h; the tunneling pathway was entirely blocked upon O-deuteration. The experimental half-life of tert-butylhydroxycarbene was verified by tunneling computations applying the Wentzel–Kramers–Brillouin formalism on the minimum energy path evaluated at the computationally feasible M06-2X/6-311++G(d,p) level of theory. Our experimental findings are supported by relative energy computations at the CCSD(T)/cc-pVDZ level of theory.