Published in

American Meteorological Society, Journal of Climate, 10(26), p. 3112-3129, 2013

DOI: 10.1175/jcli-d-12-00233.1

Links

Tools

Export citation

Search in Google Scholar

The Changing Energy Balance of the Polar Regions in a Warmer Climate

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Energy fluxes for polar regions are examined for two 30-yr periods, representing the end of the twentieth and twenty-first centuries, using data from high-resolution simulations with the ECHAM5 climate model. The net radiation to space for the present climate agrees well with data from the Clouds and the Earth's Radiant Energy System (CERES) over the northern polar region but shows an underestimation in planetary albedo for the southern polar region. This suggests there are systematic errors in the atmospheric circulation or in the net surface energy fluxes in the southern polar region. The simulation of the future climate is based on the Intergovernmental Panel on Climate Change (IPCC) A1B scenario. The total energy transport is broadly the same for the two 30-yr periods, but there is an increase in the moist energy transport on the order of 6 W m(-2) and a corresponding reduction in the dry static energy. For the southern polar region the proportion of moist energy transport is larger and the dry static energy correspondingly smaller for both periods. The results suggest a possible mechanism for the warming of the Arctic that is discussed. Changes between the twentieth and twenty-first centuries in the northern polar region show the net ocean surface radiation flux in summer increases similar to 18 W m(-2) (24%). For the southern polar region the response is different as there is a decrease in surface solar radiation. It is suggested that this is caused by changes in cloudiness associated with the poleward migration of the storm tracks.