Published in

Optica, Applied optics, 22(50), p. 4535, 2011

DOI: 10.1364/ao.50.004535

Links

Tools

Export citation

Search in Google Scholar

Model of phytoplankton absorption based on three size classes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Using the phytoplankton size-class model of Brewin et al. [Ecol. Model.221, 1472 (2010)], the two-population absorption model of Sathyendranath et al. [Int. J. Remote. Sens.22, 249 (2001)] and Devred et al. [J. Geophys. Res.111, C03011 (2006)] is extended to three populations of phytoplankton, namely, picophytoplankton, nanophytoplankton, and microphytoplankton. The new model infers total and size-dependent phytoplankton absorption as a function of the total chlorophyll-a concentration. A main characteristic of the model is that all the parameters that describe it have biological or optical interpretation. The three-population model performs better than the two-population model at retrieving total phytoplankton absorption. Accounting for the contributions of picophytoplankton and nanophytoplankton, rather than the combination of both as in the two-population model, improved significantly the retrieval of phytoplankton absorption at low chlorophyll-a concentrations. Class-dependent specific absorption of phytoplankton derived using the model compares well with previously published models. However, the model presented in this paper provides the specific absorption of three size classes and is applicable to a continuum of chlorophyll-a concentrations. Absorption obtained from remotely sensed chlorophyll-a using our model compares well with in situ absorption measurements.