Published in

Elsevier, Atmospheric Environment, 37(38), p. 6269-6278

DOI: 10.1016/j.atmosenv.2004.08.043

Links

Tools

Export citation

Search in Google Scholar

Characterization of PM2.5 and selected gas-phase compounds at multiple indoor and outdoor sites in Mira Loma, California

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Fine particulate matter (PM 2.5) and gas-phase carbonyls are categories of atmospheric pollutants that have components known to adversely affect human health. This work describes the chemical characterization of PM 2.5 and 13 carbonyl compounds measured inside 20 residences and 7 schoolrooms in Mira Loma, western Riverside County, California. Median PM 2.5 concentrations were 32.2 and 13.2 mg m À3 , while median total carbonyl concentrations were 50.8 and 62.9 mg m À3 inside the residences and schoolrooms, respectively. Organic carbon was typically the largest contributor to indoor PM 2.5 concentrations, while formaldehyde, acetaldehyde and acetone were the largest contributors to gas-phase carbonyl concentrations. Indoor/outdoor ratios for PM 2.5 were greater for residences than for schoolrooms, while the reverse was true for these ratios for gas-phase carbonyls. These results are likely due to effective PM 2.5 removal by filtration on the HVAC and the presence of more significant indoor carbonyl sources within the schoolrooms. Regression analysis of indoor and outdoor pollutant concentrations showed that for PM 2.5 , sulfate and nitrate were the best-and worst-correlated species, respectively. This suggests that nitrate is a poor tracer for outdoor-to-indoor PM 2.5 transfer. In addition, no significant correlations were observed for any of the carbonyl compounds measured. This further suggests the presence of indoor carbonyl sources inside the schoolrooms, and that indoor air quality especially in terms of carbonyl concentrations may be substantially poorer than outdoor air quality.