Published in

Volume 7B: Structures and Dynamics

DOI: 10.1115/gt2014-25675

Links

Tools

Export citation

Search in Google Scholar

High-Pressure Compressor Blade Dynamics Under Aerodynamic and Blade-Tip Unilateral Contact Forcings

Journal article published in 2014 by Alain Batailly, Mathias Legrand, Antoine Millecamps, François Garcin
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recent studies focused on the numerical prediction of structural instabilities that may arise in rotating components of an aircraft engine. These instabilities are commonly classified into two categories: Those induced by aerodynamic phenomena (such as the pressure applied on the blade by the incoming air flow) and those related to structural phenomena (such as potential blade/casing contacts). Based on an existing numerical strategy for the analysis of rotor/stator interactions induced by unilateral contacts between rotating and static components, this paper aims at combining both types of instabilities and provides a qualitative analysis of structural interactions that may arise within the high-pressure compressor of an aircraft engine. The aerodynamic pressure on the blade is simplified as a sinusoidal external load whose frequency depends on the number of upstream guide vanes. Results are presented both in time and frequency domains. Detailed bifurcation diagrams and Poincaŕe maps underline the fundamental differences in the nature of the witnessed interactions with and without aerodynamic loading on the blade.