Published in

Cell Press, Cell Reports, 10(18), p. 2521-2532, 2017

DOI: 10.1016/j.celrep.2017.02.038

Links

Tools

Export citation

Search in Google Scholar

Unsupervised spike sorting for large scale, high density multielectrode arrays

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present a method for automated spike sorting for recordings with high-density, large-scale multielectrode arrays. Exploiting the dense sampling of single neurons by multiple electrodes, an efficient, low-dimensional representation of detected spikes consisting of estimated spatial spike locations and dominant spike shape features is exploited for fast and reliable clustering into single units. Millions of events can be sorted in minutes, and the method is parallelized and scales better than quadratically with the number of detected spikes. Performance is demonstrated using recordings with a 4,096-channel array and validated using anatomical imaging, optogenetic stimulation, and model-based quality control. A comparison with semi-automated, shape-based spike sorting exposes significant limitations of conventional methods. Our approach demonstrates that it is feasible to reliably isolate the activity of up to thousands of neurons and that dense, multi-channel probes substantially aid reliable spike sorting.