Published in

American Institute of Physics, APL Materials, 1(4), p. 015703, 2016

DOI: 10.1063/1.4935126

Links

Tools

Export citation

Search in Google Scholar

Designing bioinspired superoleophobic surfaces

Journal article published in 2016 by Philip S. Brown ORCID, Bharat Bhushan ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Nature provides a range of functional surfaces, for example, water-repellent or superhydrophobic surfaces, most common among them the lotus leaf. While water-repellency is widespread in nature, oil-repellency is typically limited to surfaces submerged in water, such as fish scales. To achieve oleophobicity in air, inspiration must be taken from natural structures and chemistries that are not readily available in nature need to be introduced. Researchers usually turn to fluorinated materials to provide the low surface energy that, when combined with bioinspired surface topography, is the key to unlocking oil-repellency. This review presents the state-of-the-art in the fabrication of superoleophobic surfaces.