Published in

American Physical Society, Physical review B, 22(90)

DOI: 10.1103/physrevb.90.220407

Links

Tools

Export citation

Search in Google Scholar

Kinetic pathways to the magnetic charge crystal in artificial dipolar spin ice

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We experimentally investigate magnetic frustration effects in thermally active artificial kagome spin ice. Starting from a paramagnetic state, the system is cooled down below the Curie temperature of the constituent material. The resulting magnetic configurations show that our arrays are locally brought into the so-called spin ice 2 phase, predicted by at-equilibrium Monte Carlo simulations and characterized by a magnetic charge crystal embedded in a disordered kagome spin lattice. However, by studying our arrays on a larger scale, we find the unambiguous signature of an out-of-equilibrium physics. Comparing our findings with numerical simulations, we interpret the efficiency of our thermalization procedure in terms of kinetic pathways that the system follows upon cooling and which drive the arrays into degenerate low-energy manifolds that are hardly accessible otherwise.