Published in

Royal Society of Chemistry, RSC Advances, 31(2), p. 11858, 2012

DOI: 10.1039/c2ra22077f

Links

Tools

Export citation

Search in Google Scholar

Oligonucleotide solid-phase synthesis on fluorescent nanoparticles grafted on controlled pore glass

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Oligonucleotide solid-phase synthesis is now possible on nano-sized particles, thanks to the use of controlled pore glass-nanoparticle assemblies. We succeeded in anchoring silica nanoparticles (NP) inside the pores of the micrometric glass via a reversible covalent binding. The pore diameter must be at least six times the diameter of the nanoparticle in order to maintain efficient synthesis of oligonucleotides in the synthesizer. We demonstrated that the pores protect NP anchoring during DNA synthesis without decreasing the coupling rate of the phosphoramidite synthons. This bottom-up strategy for NP functionalization with DNA results in unprecedented DNA loading efficiency. We also confirmed that the DNA synthesized on the nanoparticle surface was accessible for hybridization with its complementary DNA strand.