Published in

American Chemical Society, ACS Applied Materials and Interfaces, 9(4), p. 4858-4863, 2012

DOI: 10.1021/am301202a

Links

Tools

Export citation

Search in Google Scholar

Superior Hybrid Cathode Material Containing Lithium-Excess Layered Material and Graphene for Lithium-Ion Batteries

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Graphene-wrapped lithium-excess layered hybrid materials (Li(2)MnO(3)·LiMO(2), M = Mn, Ni, Co, hereafter abbreviated as LMNCO) have been synthesized and investigated as cathode materials for lithium-ion batteries. Cyclic voltammetry measurement shows a significant reduction of the reaction overpotential in benefit of the graphene conducting framework. The electrochemical impedance spectroscopy results reveal that the graphene can greatly reduce the cell resistance, especially the charge transfer resistance. Our investigation demonstrates that the graphene conducting framework can efficiently alleviate the polarization of pristine LMNCO material leading to an outstanding enhancement in cell performance and cycling stability. The superior electrochemical properties support the fine hybrid structure design by enwrapping active materials in graphene nanosheets for high-capacity and high-rate cathode materials.