Published in

American Institute of Physics, Applied Physics Letters, 25(104), p. 252909, 2014

DOI: 10.1063/1.4885675

Links

Tools

Export citation

Search in Google Scholar

Major contributor to the large piezoelectric response in (1 − x)Ba(Zr0.2Ti0.8)O3 − x(Ba0.7Ca0.3)TiO3 ceramics: Domain wall motion

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The piezoelectric activity of lead-free Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 (BZT-xBCT) ceramics has been investigated as a function of composition by using Rayleigh analysis under subswitching-electric-field in combination with large-electric-field strain measurement. The result shows that the intrinsic piezoelectric response exhibits peak values in the vicinity of composition-induced R (rhombohedral)-MPB (morphotropic phase boundary) and MPB-T (tetragonal) phase transitions, but being much less than total d 33 value. On the other hand, the extrinsic piezoelectric response, especially the one associated with reversible domain wall motion, has been greatly enhanced in the phase instability regime. Our results indicate that the extrinsic piezoelectric activity is the major contributor to the high piezoelectricity in BZT-xBCT ceramics.