Published in

Wiley, Journal of Neurochemistry, 4(97), p. 1182-1190, 2006

DOI: 10.1111/j.1471-4159.2006.03858.x

Links

Tools

Export citation

Search in Google Scholar

Transforming growth factor beta1 and ethanol affect transcription and translation of genes and proteins for cell adhesion molecules in B104 neuroblastoma cells

Journal article published in 2006 by Michael W. Miller, Sandra M. Mooney, Frank A. Middleton ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Transforming growth factor (TGF) beta1 and ethanol retard the migration of young, post-mitotic neurons to the developing cerebral cortex. The coordination of this migration depends upon cell adhesion proteins (CAPs). We examined the effects of TGFbeta1 and ethanol on genes related to both TGF and CAPs. Rat B104 neuroblastoma cells were treated with TGFbeta1 (0 or 10 ng/mL) and ethanol (0 or 400 mg/dL) for 6-48 h. Total RNA was purified from each sample and analyzed using the Rat U34A GeneChip (Affymetrix). Candidate genes were those up- or down-regulated by either TGFbeta1 or ethanol. Twenty transcripts of CAPs were identified as being expressed by B104 cells and as being affected by treatment with TGFbeta1 or ethanol. The expression was verified for five representative genes (neural cell adhesion molecule, L1, and integrins alpha1, alpha7, and beta1) using assays with real-time reverse transcriptase-polymerase chain reactions. Each of these genes showed time-dependent changes. The changes were reflected in increases in protein expression that appeared within 24 or 48 h. Thus, the effects of TGFbeta1 and ethanol on CAPs parallel changes described in vivo and likely underlie changes associated with ethanol-induced alterations in neuronal migration.