Published in

BioMed Central, BMC Research Notes, 1(6), 2013

DOI: 10.1186/1756-0500-6-25

Links

Tools

Export citation

Search in Google Scholar

Empirical assessment of sequencing errors for high throughput pyrosequencing data

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Sequencing-by-synthesis technologies significantly improve over the Sanger method in terms of speed and cost per base. However, they still usually fail to compete in terms of read length and quality. Current high-throughput implementations of the pyrosequencing technique yield reads whose length approach those of the capillary electrophoresis method. A less obvious question is whether their quality is affected by platform-specific sequencing errors. Results We present an empirical study aimed at assessing the quality and characterising sequencing errors for high throughput pyrosequencing data. We have developed a procedure for extracting sequencing error data from genome assemblies and study their characteristics, in particular the length distribution of indel gaps and their relation to the sequence contexts where they occur. We used this procedure to analyse data from three prokaryotic genomes sequenced with the GS FLX technology. We also compared two models previously employed with success for peptide sequence alignment. Conclusions We observed an overall very low error rate in the analysed data, with indel errors being much more abundant than substitutions. We also observed a dependence between the length of the gaps and that of the homopolymer context where they occur. As with protein alignments, a power-law model seems to approximate the indel errors more accurately, although the results are not so conclusive as to justify a depart from the commonly used affine gap penalty scheme. In whichever case, however, our procedure can be used to estimate more realistic error model parameters.