Published in

American Institute of Physics, The Journal of Chemical Physics, 10(120), p. 4619

DOI: 10.1063/1.1645243

Links

Tools

Export citation

Search in Google Scholar

Calibration of the n-electron valence state perturbation theory approach

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Extensive tests have been performed to benchmark and to compare with second-order perturbation theory based on a complete active space self-consistent field reference function (CASPT2), the recently developed n-electron valence state perturbation theory at second order (NEVPT2). Test calculations included the group fifteen diatomic molecules X2 (X=N, P, As, and Sb) and the S4/2D and S4/2P splittings for the corresponding atoms, the A11–3B1 splittings for CH2 and SiH2, and the absorption spectra of pyrrole and of Cu(Imidazole)2(SH)(SH2)+, which is a model for plastocyanin. Comparisons with full configuration-interaction calculations and experimental data show that the accuracy of NEVPT2 is in most cases even better than CASPT2. Where intruder states hamper the CASPT2 calculations, NEVPT2 performs significantly better. Care is needed in the choice of active orbitals, for example in the calculation of the S4/2D and S4/2P splittings for the group fifteen atoms. This is due to the different treatment of orbitals belonging to the inactive or active spaces, making the NEVPT2 not invariant for the choice of active space, even in cases where the multiconfiguration self-consistent field energy is invariant.