Published in

Wiley, FEBS Letters, 14(585), p. 2193-2198, 2011

DOI: 10.1016/j.febslet.2011.05.066

Links

Tools

Export citation

Search in Google Scholar

Förster resonance energy transfer demonstrates a flavonoid metabolon in living plant cells that displays competitive interactions between enzymes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We have used Förster resonance energy transfer detected by fluorescence lifetime imaging microscopy (FLIM-FRET) to provide the first evidence from living plants cells for the existence of a flavonoid metabolon. The distribution of flux within this system may be regulated by the direct competition of enzymes that catalyze key branch-point reactions, flavonol synthase 1 and dihydroflavonol 4-reductase, for association with the entry-point enzyme, chalcone synthase. Because the flavonoid enzymes were likely recruited from pathways of primary metabolism, our findings suggest a new general working model for the regulation of dynamic pathways in their native cellular context.