Published in

Cell Press, Stem Cell Reports, 5(3), p. 858-875, 2014

DOI: 10.1016/j.stemcr.2014.08.012

Links

Tools

Export citation

Search in Google Scholar

Transcriptome-wide Profiling and Posttranscriptional Analysis of Hematopoietic Stem/Progenitor Cell Differentiation toward Myeloid Commitment

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Hematopoietic stem cells possess lifelong self-renewal activity and generate multipotent progenitors that differentiate into lineage-committed and subsequently mature cells. We present a comparative transcriptome analysis of ex vivo isolated mouse multipotent hematopoietic stem/progenitor cells (LinnegSCA-1+c-KIT+) and myeloid committed precursors (LinnegSCA-1negc-KIT+). Our data display dynamic transcriptional networks and identify a stem/progenitor gene expression pattern that is characterized by cell adhesion and immune response components including kallikrein-related proteases. We identify 498 expressed lncRNAs, which are potential regulators of multipotency or lineage commitment. By integrating these transcriptome with our recently reported proteome data, we found evidence for posttranscriptional regulation of processes including metabolism and response to oxidative stress. Finally, our study identifies a high number of genes with transcript isoform regulation upon lineage commitment. This in-depth molecular analysis outlines the enormous complexity of expressed coding and noncoding RNAs and posttranscriptional regulation during the early differentiation steps of hematopoietic stem cells toward the myeloid lineage.