Published in

Elsevier, Cellular Signalling, 5(26), p. 1135-1146, 2014

DOI: 10.1016/j.cellsig.2014.01.009

Links

Tools

Export citation

Search in Google Scholar

A new non-canonical pathway of Gαq protein regulating mitochondrial dynamics and bioenergetics

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Contrary to previous assumptions, G proteins do not permanently reside on the plasma membrane, but are constantly monitoring the cytoplasmic surfaces of the plasma membrane and endomembranes. Here, we report that the Gαq and Gα11 proteins locate at the mitochondria and play a role in a complex signaling pathway that regulates mitochondria dynamics. Our results provide evidence for the presence of the heteromeric G protein (Gαq/11βγ) at the outer mitochondrial membrane and for Gαq at the inner membrane. Both localizations are necessary to maintain the proper equilibrium between fusion and fission; which is achieved by altering the activity of mitofusin proteins, Drp1, OPA1 and the membrane potential at both the outer and inner mitochondrial membranes. As a result of the absence of Gαq/11, there is a decrease in mitochondrial fusion rates and a decrease in overall respiratory capacity, ATP production and OXPHOS-dependent growth. These findings demonstrate that the presence of Gαq proteins at the mitochondria serves a physiological function: stabilizing elongated mitochondria and regulating energy production in a Drp1 and Opa1 dependent mechanisms. This thereby links organelle dynamics and physiology.