Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 2(452), p. 1707-1716, 2015

DOI: 10.1093/mnras/stv1400

Links

Tools

Export citation

Search in Google Scholar

Atmospheric Scintillation in Astronomical Photometry

Journal article published in 2015 by J. Osborn, D. Föhring, V. S. Dhillon ORCID, R. W. Wilson
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Scintillation noise due to the Earth's turbulent atmosphere can be a dominant noise source in high-precision astronomical photometry when observing bright targets from the ground. Here we describe the phenomenon of scintillation from its physical origins to its effect on photometry. We show that Young's (1967) scintillation-noise approximation used by many astronomers tends to underestimate the median scintillation noise at several major observatories around the world. We show that using median atmospheric optical turbulence profiles, which are now available for most sites, provides a better estimate of the expected scintillation noise and that real-time turbulence profiles can be used to precisely characterise the scintillation noise component of contemporaneous photometric measurements. This will enable a better understanding and calibration of photometric noise sources and the effectiveness of scintillation correction techniques. We also provide new equations for calculating scintillation noise, including for extremely large telescopes where the scintillation noise will actually be lower than previously thought. These equations highlight the fact that scintillation noise and shot noise have the same dependence on exposure time and so if an observation is scintillation limited, it will be scintillation limited for all exposure times. The ratio of scintillation noise to shot noise is also only weakly dependent on telescope diameter and so a bigger telescope may not yield a reduction in fractional scintillation noise. ; Comment: 11 pages, 12 figures, accepted in MNRAS