Published in

Elsevier, Methods in Enzymology, p. 367-383

DOI: 10.1016/b978-0-12-391862-8.00020-x

Links

Tools

Export citation

Search in Google Scholar

Modern Methods to Investigate the Oligomerization of Glycoprotein Hormone Receptors (TSHR, LHR, FSHR)

Journal article published in 2013 by Marco Bonomi, Luca Persani ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

As for other GPCRs, the oligomerization of glycoprotein hormone receptors (GPHRs) appears as critical event for receptor function. By means of modern techniques based on the BRET or FRET principle, GPHR oligomerization has been reported to explain several physiological and pathological conditions. In particular, the presence of oligomers was demonstrated not only in in vitro heterologous systems but also in in vivo tissues, and GPHR homodimerization appears associated with strong negative cooperativity, thus suggesting that one hormone molecule may be sufficient for receptor dimer stimulation. In addition, oligomerization has been reported to occur early during the posttranslational maturation process and to be involved in the dominant negative effect exerted by loss-of-function TSH receptor (TSHR) mutants, that are prevalently retained inside the cell, on the surface expression of wild-type receptors. This molecular mechanism thus explains the dominant inheritance of certain forms of TSH resistance. Here, we provide the description of the methods used in the original BRET, FRET, and HTRF-RET experiments.