Published in

Crop Science Society of America, Journal of Environmental Quality, 4(32), p. 1262

DOI: 10.2134/jeq2003.1262

Links

Tools

Export citation

Search in Google Scholar

Phosphogypsum Amendment Effect on Radionuclide Content in Drainage Water and Marsh Soils from Southwestern Spain

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Phosphogypsum (PG) is a residue of the phosphate fertilizer industry that has relatively high concentrations of 226Ra and other radionuclides. Thus, it is interesting to study the effect of PG applied as a Ca amendment on the levels and behavior of radionuclides in agricultural soils. A study involving treatments with 13 and 26 Mg ha(-1) of PG and 30 Mg ha(-1) of manure was performed, measuring 226Ra and U isotopes in drainage water, soil, and plant samples. The PG used in the treatment had 510 +/- 40 Bq kg(-1) of 226Ra. The 226Ra concentrations in drainage waters from PG-amended plots were similar (between 2.6 and 7.2 mBq L(-1)) to that reported for noncontaminated waters. Although no significant effect due to PG was observed, the U concentrations in drainage waters (200 mBq L(-1) for 238U) were one order of magnitude higher than those described in noncontaminated waters. This high content in U can be ascribed to desorption processes mainly related to the natural adsorbed pool in soil (25 Bq kg(-1) of 238U). This is supported by the 234U to 238U isotopic ratio of 1.16 in drainage waters versus secular equilibrium in PG and P fertilizers. The progressive enrichment in 226Ra concentration in soils due to PG treatment cannot be concluded from our present data. This PG treatment does not determine any significant difference in 226Ra concentration in drainage waters or in plant material [cotton (Gossipium hirsutum L.) leaves]. No significant levels of radionuclides except 40K were found in the vegetal tissues.